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ABSTRACT

When coal is extracted by the long wall mining method, two gate- 

roads on either side of the working face are driven with the advancing 

operation. In the surroundings of these openings the state of stress 

which existed prior to mining is not only disturbed by the drifting 

process of the gate-roads but also by the coal extraction in the long 

wall, resulting in an "unsymmetrical” stress distribution. Varying 

incremental pressure components and the high complexity of strata 

movements make it extremely difficult to control the rock behavior 

under unsymmetrical conditions by conventional support. Application 

of roof bolts as an auxiliary support can improve the control of the 

strata surrounding long wall gate-roads.

To indicate the qualitative effect of roof bolts on the stress 

distribution around underground openings in stratified rock under 

unsymmetrical loading conditions, composite models made of photo- 

elastic material were tested in a 6 ft. diameter centrifuge, providing 

proper loading conditions. Stress distributions were permanently 

"frozen” into the models while under load.

Test results indicate that the high shearing stresses which 

occur near the rigid abutment of the long wall gate-road and the 

bending stresses in the roof beams can be reduced considerably by 

the application of roof bolts in proper pattern arrangements.

Since this study was concerned with the development of an experi­

mental technique and simple structural conditions were chosen, an exten­

sion of this investigation to more complicated conditions is possible.
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Shearing Stress (psi)
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Unit Weight (Ib./cu.ln.)
Unit weight of Bolt Material (lb./cu.in.)
Modules of Elasticity (psi)
Modulus of elasticity of Bolt Material (psi)
Poisson’s Ratio of Roof Rock
Poisson’s Ratio of Bolt Material
Outer Fiber Banding Stress when both Friction and
Suspension Effects are present (psi)
Outer Fiber Bending Stress tdien neither Friction nor 
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Fractional Change in the Outer-fiber Bending Stress due 
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Attachments (Bolts)
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* Angular Frequency of the incident Light 

n « Fringe Order
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CHAPTER I

INTRODUCTION 

History of Roof Bolting

Roof bolting as a now kind of support was introduced in the

mining Industry in the last century. The application was, however,

very sporadic and mostly restricted to experimental work. In 1880,

MUELLER^ ̂ mentioned roof bolts for the first time as used in a
(2)tunnel operation in the Swiss Alps. As reported by BUSCH , a 

few attempts have been made since 1912 in Upper Silesia in Germany 

to reinforce roadway walls, by this method, in coal mines. In 1917, 

B A L K I N '  introduced this new support in the American coal mining 

industry (Sagamore Mine of the Pocahontas Fuel Company). The begin­

ning, however, of broad application and scientific study was made 

after 19^5, when the mining industry in the United States installed 

many roof bolts under various conditions. In the past seventeen 

years a remarkable, continuous increase was achieved and most 

countries with underground operations followed the example given 

by the United States. In table (1) the total number of roof bolts 

installed in soma important mining countries is listed for the year 

1958.
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TABLE

Country Number of bolts

USA 50,000,000

Great Britain 250,000

West Germany 180,000 (without Saarld.)

France 112,000

Saarland 33,600

Poland 12,000

Motherland 3,500

Austria 1,600

USSR Experimental status

Bulgaria m

Belgium t#

Japan ft

Purpose of Investigation

Numerous publications have been presented in this new fiold of 

support since 19^5 in the United States, Austria, Bulgaria, Canada, 

France, Germany, Great Britain, Netherlands Poland, Russia and



www.manaraa.com

3

Sweden. In addition to these sources the author obtained Information 

from many manufacturers of roof bolt equipment and accessories, and 

evaluated the results of private correspondence with mining organisa­

tions , research Institutes and universities in the United States and 

Europe.

The wide application of the long wall mining method In Europe,

Japan and elsewhere results In an unsymmetrical loading distribution

around the gate-roads driven along each side of the extracted area.

Considerable convergence occurs on the elite of the coal extraction

which cannot be avoided even by stowing, cribs or chocks. The high
*

costs ©f conventional support as used in long wall gate-roads, which 

have to be repaired several times and to be renewed in some cases, 

Justify further investigations of the application of roof bolts as an 

auxiliary support.

The complicated stress conditions around long wall gate-roads 

make a theoretical approach difficult and restrict study to experi­

mental investigations. Although many series of measurements of 

pressure and convergence, performed in coal mines all over the world, 

have improved the knowledge of roof bolt support in these workings, 

sufficient data have not been obtained to provide a complete solution 

of this problem.

♦All kinds of support are defined as conventional which reinforce 
the strata from within the opening while roof bolts act in the 
strata itself.
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Based on the literature study concerned with this subject the 

author decided to approach the problem by means of model experiments* 

Some previous attempts have been made to find the effect of roof 

bolts by duplicating the conditions existing underground in models*

The Investigators assumed that the stress distribution around the 

mine openings was symmetrical, as occurs in the roadways of the most 

American coal mines using the room and pillar mining method; that is, 

coal is left on both sides in the abutments*

In the present investigation unsymmetrical stress conditions 

were duplicated with three-dimensional models representing a section 

through a gate-road; the subsiding area was simulated with sheets of 

foam rubber* In order to maintain the stress magnitude and distribu­

tion, and the distortion and convergence of the strata, at scale 

proportions, where roof bolts are installed, variable body forces and 

proper loading conditions on the model were obtained by means of a 

6 ft* diameter centrifuge. A technique for the xisage of bi-refringent 

plastic material in the centrifuge was developed to indicate the 

stress distribution by means of photoelastic effects* Fringes showing 

lines of equal maximum shearing stress were '’frozen' in the model under 

load In the centrifuge and later analysed with the aid of a polar!- 

scope. Different cases, with and without bolts, were compared and 

various pattern arrangements were designed*
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Since rook does not behave strictly as an clastic body when 

under stress, the analysis of the results in this photo-elastic In­

vestigation must be qualitative rather than quantitative, and the 

results a m  obviously limited in application. Possible studios with 

a brittle material and more complicated conditions, such as inclined 

formations, varying thicknesses of beds and different moduli of 

elasticity, open a wide field for a continuation of this basic roof 

bolt study concerned with unsyraraetrlcal loading conditions.
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CHAPTER II

REVIEW OF LITERATURE

Stresses and Movements In th« Strata Around Openings

for any problem dealing tilth roof bolting, a sufficient know­

ledge of the stresses and the movements in the strata around openings
/h Aj. i|A\

Is necessary* The results of studies made bf many authorsv 1

lead to the following conclusions: When an excavation Is mined in 

rock at depth, the stress distribution Is readjusted in such a way, 

that a concentration of stress occurs In the Immediate vicinity of 

the opening* The magnitude of the maximum stress which occurs is a 

function of (I) the geometry of the opening, (2) the physical proper­

ties of the material and (3) the state of the stress which existed 

prior to mining | and diminishes rapidly with increasing distance 

from the opening* A condition can exist, therefore, in which local 

stress at one or more points in the material surrounding the excavation 

exceeds the strength of the rock* Hie failure which originates at 

one of these points will propagate into the surrounding material and 

a zone of fractured rock will be formed around the opening* This 

fracture zone will become stable when the strength of the rock is no 

longer exceeded by the stress at any point in the material surrounding

the excavation
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The influence of the geometry of the opening, the properties 

of the rock and the original stress field upon symmetrically loaded 

openings was in general investigated and described by PANEK'**

GBERT, DUVALL and M E R I L L ^  at al. Almost the same results were 

obtained in an independent study by DQRSTSTaflTZ^ in 19^1 who 

summarised in three significant pictures, as shown in Figure 1, a 

study of stress distribution around openings* An elliptical shape 

shows the lowest stress concentration, wherein the best height/width 

ratio is dependent on the stress field*

Symmetrical Case ; Ownings in toe Hgos» and n j^a r  H^lSg

SGHHTAGr ' performed the first photo-elastic study of stratified 

rock, which occurs in coal depositions* He found a remarkable in­

fluence of the bed thickness and the friction between the beds on the 

degree of stress concentration* This is shown in the Pictures 1 and 

2, where rectangular and circular openings are loaded with vertical 

pressure* The tensile stress in the back is 1*7 and 1*5 times, 

respectively, the overlying pressure P and indicates the critical 

failure points, since the tensile strength of rock is known to be 

l/8 - l/40 of its compressive strength. The results of these studies 

are applicable to roadways as utilized in the room and pillar mining
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Height/Width
3 / 2

Figure 1
Stress distribution

around openings 
(after Dorstewitz
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Picture 1* Influcnca of Strata Bedding and Friction between 
Bedding on the Stress Distribution around ^octangular 
Openings#

Picture a# Influence of Strata Bedding and Friction between 
Bedding on the Stress Distribution around Circular Openings 
(after Sonntag)
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method, since the original and readjusted stress distribution is 

influenced only by the excavation process of the opening itself*

The only significant strata movement Is the deflection of the 

Immediate roof above the opening*

Asymmetrical Cage. ; flasteB l£ J&e LogH 'Ml iflBftBg Bgggg

Hie study of stresses and movements around the headings and 

gate-roads driven on each side of the long wall face is much more 

complicated than in the case of room and pillar mining* Since the 

investigation of this strata behavior is rather new and of primary 

interest to the present model study, an intensive review of literature 

was necessary*

Additional Pressure* An advancing long wall face, single 

unit*, with the gate-roads A and B is shown in Figure 2* the stress 

distribution and the distortion of the strata in the neighborhood of 

these openings are heavily influenced by extraction of the coal on 

only one side of the gate-roads* Sven if a flat formation is oon-

*A mining operation with only one long wall and two gate-roads is 
defined as a "single unit". In a double or T-unit two long walls 
and three gate-roads are combined in one mining operation* In the 
center or haulage gate-road, the coal is extracted on both sides 
and a high distortion of the strata results*
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Slderod, the case becomes "unsyrmaetrlcal" under these conditions*
_  (a)

S08HTAG' made photo-elastic studies with models representing 

the section C - C* in Figure 2 across the long wall face and obtained 

results as shown in the Pictures 3* h and 5* He considered an opera* 

tlon with full stowing and varied the thickness of the strata beds 

and the friction between them*

The strata behavior causes an additional pressure ahead of the 

working face, which is transferred to the gate-roads on either side. 

CRSUEL3 and in the Netherland measured an increase of

pressure In the long wall headings starting more than 600 feet ahead 

of the face and reaching a maximum when the face passed the measuring 

point* The total pressure reached in this case was from 1,123 to 5*312 

pal* In Figure 3* the findings of J A C O B I ^ w h o  made similar in­

vestigation in Germans, are plotted. Since the depth here was almost 

twice as great as in the first example the pressures ranged from 

2,$00 to 1%*2$0 pel. STASSEH and LISGOIS^12  ̂in Belgium and 

SCHWARTZ^13* and D U B O I S i n  France obtained very similar 

results* They Installed Instruments in headings to measure the con­

vergence of the hanging and foot walls, a factor dependent on the 

pressure, while the long wall face was (a) approaching, (b) passing 

and (c) mowing away from the measuring points* The curve in Figure k 
shows the relation between the convergence (ordinate) and the time or 

distance from the face (abcissa)* The point of inflection I of this

•The relation between time and distance is given by the rate of 
advance of the long wall, i.e. $ feet/day.
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D

Figure 2 Schematic View of a Long Wall Operation
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Picture %  Stress Distribution in the Sur­
roundings of a tong Viall Operation with, 
thick Beds (after Sonntag)

13

Picture Stress Distribution in the Sur­
roundings of a Long Operation with low 
Friction between the Beds (after Sonntag)
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Picture 5* Stress Distribution in the Surroundings 
of a Long Wall Operation with thinner Beds (after 
Sonntag)
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(after Sonntag and Jacobi)
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so-called *S* • curve lies, dependent on the hardness of the strata 

and the seas (a) in the stowing area* (b) in the working area or 

(c) ahead of the face (Figure 5)* During the course of these 

measurements the pressure reached its maximum 10 - 20 feet ahead 

of the face and was found to be as much as ’+.5 times higher than 

the pressure f of the overlying strata (JACOBI)^* * *foen failure 

occurs in the coal seam near the face* the pressure drops down to 

almost aero In the destressed sons around the working room. By 

means of a specially designed measuring instrument, Jacobi followed 

the pressure In the stowing area and found a slow increase there, 

finally reaching a value as high as that due to the overlying strata. 

There was no indication of the occurence of an abutment similar to 

that ahead of the long wall face (ATCINSQN^* ^) .

The pressure wave accompanying the moving long wall face, which
( 4<y\

was also measured by HILBIG' ' , gives an idea of the extent to which 

the gate-roads are influenced by the advancing extraction process. 

Since the outer sides of the gate-roads (D and E in Figure 2), where 

the coal is left in its original position, also act like abutments 

with respect to the extraction area, the stress distribution becomes 

even more complicated.

*In the application of the "dome-theory* as a solution for the strata 
behavior above long wall operations, a second abutment far back in the 
stowing area was expected.. The “trough-theory* after LEHMANN, which 
was confirmed by HILBIG'1"'# agrees better with the actual measuring 
results obtained by Jacobi.
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Figure 5 ” S " - curve
with point of inflection I

(after Dubois)
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Relaxation Movements of the Strata. Duo to the additional 

pressure described In the previous section, several kinds of strata 

Movement can be observed, which do not occur in the neighborhood of 

openings under symmetrical loading conditions. The most significant 

movement is the convergence between the hanging and foot walls when 

the coal is extracted on one side. FLAKE' 1 made extensive investi­

gations in this field and showed as a result, that the strata 

behavior perpendicular to the gate-roads (section B-D* and E-E* in 

figure 2) is similar to that across the long wall working (section 

C-C* in the same figure). The amount of the convergence is dependent

on the strength of the rock, the rate of advance and the comp res si-
( 19)bility of the stowing. These latter statements made by HOFFMANN' , 

GRAEBSCH^2*^ et al. were confirmed by the results of Flake.

According to MIDDENOORF and J A C O B I H O E V E L S  and ROLSHOVEN*22' 

and KRIPPNER^2^  et al., the relaxation movements of the strata in 

the neighborhood of gate-roads can be summarised in 5 significant 

points:

(1) Due to the coal extraction, a closure between hanging and 

foot walls can be observed. This convergence is not only dependent

•The amount of the additional pressure is naturally dependent on the 
convergence in the total mining region. The convergence, however,
can be controlled to a certain extent by the method of stowing or 
caving, which influences the strata movements in the long wall area 
and around gate-roads considerably.
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strength of the strata, the support resistance and the yielding rate

of the cribs or chocks on the extraction side (D* or S* in Figure 2).

The radius of deflection of the strata which influences the shape of

the convergence curve is much larger for sandstone than for clayey 
*

shale , both in the hanging and foot walls.

(2) Along the axes of the gate-roads, the hanging and foot

walls move in opposite directions; the hanging wall being drawn

towards the stowing area. The amount of these movements is again

dependent on the strength of the rock. Measurements of strain in

connection with these movements lead to the assumption that sandstone

behaves elastically under these circumstances, while clayey shale

shows large deformations which are not recoverable. Particular
(Zb)reference to this occurence is given by 5CH0EHMAN8 .

(3) Perpendicular to the long axes of the gate-roads in the

plane of section D-D* In Figure 2, both hanging and foot wall move

towards the extraction area. These displacements were also found

to be dependent on the type of the associated rock and according to 
He)GRAEBSCH approximately twice as great for sandstone as for sand 

shale.

•Sandstone t shale and clayey shale are the predominate country rocks 
in coal depositions.

on the thickness of the seen but also on other factors, such as, the
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(4) Both hanging and foot vail show a bed separation as a 

result of the strata movements, cited under (l) to (3)• This occur­

ence is favored in particular by the bed displacements in the lateral 

directions, (2)* The amount of bed defoliation increases with the 

decrease in strata strength; sandstone exhibiting less separation 

than shale (GRAEBSCH*20 )̂.

(5) The gate-road walls wove towards the openings as a result 

of the general movement of the rock mass into the stowing area, as 

well as the additional pressure developed during the opening extraction 

process (18, 19* 20 ami 21).

Theory and Practice of Roof Bolting in Stratified Rock

Any support underground should preserve the original size and 

shape of the opening for haulage and ventilation (FRITZSCHE'

LEWIS With an increase in depth this objective becomes more

difficult to attain, due to the increase in the vertical pressure 

resulting from the overlying strata. Differences between the properties 

of rock types encountered also become more important. As long as the 

induced stresses do not exceed the strength of the rock around the 

opening, large distortions will not occur. If, however, the material 

is originally weak, or if the strength is diminished by blasting or 

weathering effects, failure may be observed. P zone of destressed rock
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will form around the opening and load the man-made supports by its 

weight.

If a new equilibrium is not achieved within a short distance 

from the wall of the opening t the destressing process continues in 

the zone between the support and the effective stress ellipse, and a 

pseudo-plastic behavior of the strata will be seen (Picture 6). 

SCHUEMAHN^^* stated that these pseudo-plastic movements can 

only occur, when the elastic strength of the rock is exceeded and the 

rock tries to reach a new state of equilibrium. With an extension 

of the destressed zone, the weight on the artificial support will 

increase and for this reason this sons should be kept as small as 

possible.

If the convergence of the overlying strata is considered in 

addition to the pseudo-plastic behavior of the adjacent strata, two 

major criteria for any support are:

(a) development of high reinforcement to reduce bed separation

ami to keep the destressed zone small,

(b) a built-in yielding effect to prevent unwanted deformation

and distortion of the support, since a certain 

amount of convergence cannot be avoided.

It is normally not possible to fulfill both requirements by conventional 

support, since the reinforcing and yielding effect contradict to a 

certain extent. To stabilise the strata around an opening, an improve-
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Picture 6# Pseudo-plastic Behavior of the Strata in a Long 
WfcJUl Gate-road,

Picture 7* “Quarter-Pkxm** Shape in a Borehole caused by 
Bed Dlsplaceaent*
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went can be achieved by the application of roof bolts based on several 

effects, which may be divided into two groups*
(a) The securing of material which has already failed,

(b) The prevention of failure and decrease of the relaxation 

movements*

Both effects are discussed theoretically and explained in the litera­

ture as follows:

Suspension Theory

Roof bolts may be used to secure fractured pieces of the strata 

to solid ground* Since the bolts must support the full load of any 

rock fragment which may come against it, sufficient strength and 

anchorage is required to support the estimated weight of the largest 

piece it may have to hold (THOMAS SCHMUCk/ * ^  cited an example

in a Colorado coal mine, where 1-inch wedge type bolts of only 2b

inches length were used to tie a thin band of shale to a sandstone

above. BtlCKY^^ and JACOBI calculated the suspension effect of 

roof bolts for static loading conditions* According to the latter 

author, the weight of a bed for one meter length of roadway was 1 1 ,2 5  

tons, based on the following data:

span of the opening ** ^,5 ro

thickness of the bed » 1,0 m

specific gravity » 2,5 Ums/wr



www.manaraa.com

24

Figure 7 "Plug-effect" of
roof bolts
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Two bolts with a load capacity of 6 tons each would bo sufficient to 

suspend the bed (Figure 6), The actual load can be considered to be 

even less, since the ends of the beam or plate might be supported to 

a certain extent* For this example the following assumptions were 

made$

(a) The existance of sufficient strength of the sandstone in 

tension and compression for the anchorage of the bolt heads,

(b) negligible deflection of the main roof*

(e) So distortion of the clay by weathering*

(d) No indenting of the washers into the clay under a load 

of 6 tons.

The suspension conditions as given in the example by Jacobi have been 

confirmed by other authors, and can be applied also to a higher 

number of bolts where the dimensions and weight, respectively, of 

the suspended rock increases*

OggB Theory

In many cases, geological conditions will exclude the possibili­

ties of suspension of the Immediate roof, either because a stronger 

bed does not exist or is so high above the opening that an economical 

use of bolts is out of question. Besides the strength of the rock, 

thickness of the beds is a contributing factor to the stability of 

the strata around the opening* In 1952, JACO0IW  ' calculated, as an
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example, that a had of 33 can thickness with a tensile strength of 

5 kg/oa* , a compressive strength of 100 kg/cm and a span of 5 rooters 

could just support its own weight* A thinner beam would break under 

the same conditions* while a thicker one would carry more load.

Similar calculations were made by OBERT, DUVALL and in

i960, who also developed several formulas for the relationships be­

tween these pertinent factors.

The thickness of the effective beam can be increased by clamping 

several thinner layers together with the aid of roof bolts. 

KRIPPNSR^"^ and JACOBI^*' compared the bending strength and the 

deflection of three boards for two cases: (a) with nails and (b) 

without nails, the nails representing the effect of the bolts.

(Figure ?). If elastic behavior and the same load are assumed in 

both eases, stresses are diminished to l/3 and deflection to l/9 in 

case (b) as compared to (a). The load capacity is three times higher 

and with this increased load the deflection is only l/3.

P A N I K ^ ^  in 1956, Introduced the laws of mechanics into the 

discussion concerning roof bolt application in stratified rock and 

expressed the maximum bending and shearing stress of the rock beam 

above an opening underground as
WL

"(max)
(1)

0“ » M i
**<■ax) “

(2)
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The deflection at mid span was determined as

(T « 32£t2 toi

t « thickness of the beam*

L » span of the opening *

W * weight per unit volume*

E * modulus of elasticity*

The reciprocal relationship between the maximum bending stress 6" 

and the thickness of the beam t is expressed in equation (1), s' 

ordinarily being much greater than the shearing stress. The stress 

distribution along the beam is shown in Figure 8.

Several adjacent Individual beds of equal thickness and modulus 

of elasticity do not influence one another and individually develop 

the same stresses and deflections as a single beam. MIDDESIDORF^2^' 

and JACOBI^21  ̂and SCHUEKMANN^27  ̂investigated bed displacements by 

drilling vertical and inclined holes into the immediate roof of open­

ings without installing bolts. The results* after a period of settle­

ment* are summarized schematically in Figure 9 for the symmetrical 

and unsymmetrical cases. A view inside a borehole shows the occurence 

of the typical "quarter moon" shape due to the relative bed displace­

ments (Picture 7).

To decrease the displacement* deflection and stress and to increase 

the effective thickness of the working beam* roof bolts can be installed; 

their action being based on four different effects.
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---- L / 2 -------> |c ----- L/2 -------

Stress distribution along the 
Figure 8 beam in the immediate roof of an mine

opening (after Panek)
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(a) Symmetrical case

(b) Unsymmetrical case

Figure 9 Bore hole displacement
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Increase of Frictional Resistance to Bedding-plan® Slip. As 

shown in Figure 9» a slip occurs between different beds in the 

immediate roof when pressure is applied. If gravitational load is 

assumed for a symmetrical case, the slip at mid span is zero and 

Increases to a maximum towards the abutments. In unsymmetrical 

cases, the distribution of the relative displacements occuring when 

the static friction between the beds is exceeded becomes more com­

plex ( P A N E K ^ ) .

If roof bolts are installed with pre-tension, the slip and the 

deflection can be reduced due to the higher friction force developed, 

the bolt effect for this type of reinforcement, is of particular 

interest near both sides of the opening, where the largest relative 

displacement is found* JACOBIw  - calculated, for a symmetrical 

example, that a friction force of 35 tons between two beds of 0,5 « 

thickness was needed on each side, to prevent any deflection. The 

supporting data given were:

load » 3,0 a of strata

specific gravity * 2,5 tons/wP

span of the opening * 5»0 ®

compressive strength » 200 kg/caf'

tensile strength * 10 kg/cm

(See also Figure 10)

If a friction value of f*- =1.0 for stone on stone is assumed, the
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friction force of 35 tons can be achieved by U> bolts, which must be 

tightended with a pre-tension of 17«5 tons each. As a conclusion it 

was stated by Jacobi that the friction increases in proportion to the 

pre-tension of the bolts.

Shear Strength of the Roof Bolts (”PlugK - Effect). Bedding- 

plane slip and deflection can also be decreased if roof bolts with 

high shear strength are installed^* and Even

If the friction effect, discussed in the previous paragraph, is 

neglected, two steel bolts of 30 mm in diameter would be sufficient 
to prevent any slip or deflection; the stresses, however, around the 

bolt holes would be extremely high and might cause rock failure in 

the neighborhood of the bolts. With a small beam deflection due to 

slip, the “plug** - effect comes Into action since the diameter of 

bolt and hole always differ slightly.

Shear Reinforcement in the Rock. Neither increase in frictional 

resistance nor the ’’plug** - effect can prevent rock failure in shear 

(JO, 31, 32 and 35)^ jf the rock tensile strength is sufficiently 

high, shear cracks will occur near both abutments when the load 

roaches a critical point. The beam may be assumed as a series of 
cubes whose vertical interplanes represent the planes of shear. Roof 
bolts installed at an angle of, i.e. ^5°, through the shearing planes
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2
(?c = 100 kg/cm

- I -
0.5
Jk_

Increase of frictional resist 
Figure 10 to bedding-plane slip by

- roof bolts

m c e

(after Jacobi)
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can reinforce the beam considerably (Figure 11 after JACOBIw  ')•

The strengthening effect of this bolt pattern is explained by the 

basic laws of a framework; the bolts act as hinged tie bars while 

diagonal struts are built up in the rock beam and thus the roof will 

be strengthened in shear.

Tensile Reinforcemeat in the Rock. Since most rocks in the 

carboniferous strata have a very low tensile strength^1®* ^  and 20 , 

the bending stresses on the lower side of the beam should be trans­

ferred to a reinforcement. This can be done by connecting the bolt 

ends with wire ropes or steel bars at the lower side of the beam.

It was calculated by JACOBI that the tensile stress developed in 

a beam might be carried completely by this kind of reinforcement, 

when a pre-tension of 23,3 tons in the wire could be applied. The 

data accompanying this example are the same as in the previous cases 

(Figure 12). The theoretical calculations must, however, be adjusted, 

since in an underground opening the acting abutments of a beam are 

beyond the walls, inside the pillars, and reinforcement cannot be 

mounted at these points* A portion of the tensile stresses must 

therefore be carried by the rock itself. The value of 3»2 kg/cm in 

the given example is too small, since a very high pre-tension in the 

wire was assumed, which cannot be reached in actual practice underground*
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100 kg/cm■ III |l l

5 kg/cm*

Figure 11
Shear reinforcement of the 
strata by roof bolts

(after Jacobi)
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51.2 kg/cm2

23.3 t

(a) Installation of 4 bolts and a wire rope 

COVERED BY STEEL ROPE

(b) Moment diagram

Figure 12 Tensile reinforcement of 
the strata by roof bolts

(after Jacobi)
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If a clamped beam la considered, the tensile stresses in the 

reinforcement device would be lower (JACOBIv /). The remaining ten­

sile stress, however, in the rock could cause a crack at either end, 

starting on the upper surface of the beam, making the clamping-action 

ineffective* In practice it is therefore not desirable to consider 

the roof strata around openings as clamped beams.

Roof bolts can be installed at a flat angle of less than 4$°, 

to transfer the tensile stresses in the ropes or steel bars as far 

into the abutments as possible. The connection between the ropes 

or bars and the bolts must be strong enough to carry the load.

Model Study

To confirm the results of theoretical analysis of underground

stress conditions and specifically to obtain additional information as

to the effect of roof bolts on opening stability, experimental studies

with small-size models have been performed by various investigators
(21,
Theory of Model Study

Stress distribution and stress magnitudes can be determined for 

actual conditions underground when the similitude between model and 

prototype Is adequate. While in some tests visual observation of the 

model under load can give an indication of the behavior of the proto­

type, measurements of strain, deflection, etc., are required in more 

accurate investigations* To translate the results of these tests to 

a full-scale structure, it is necessary to consider the conditions 

for structural similarity between model and prototype which may be
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derived from the equation of some quantity* such as the stress* at

a general equation can be obtained which must hold true for both 

model and prototypes

Model tests can be either destructive or nondestructive* In the first 

case it is possible to determine only certain maximum stresses which 

occur at the time of failure. In nondestructive tests* the state of 

strain in the model, and from this the similar condition in the proto­

type* can be indicated for any load below failure. In the latter 

case* the model can be constructed of materials different from that 

of the prototype and by measuring the model strains according to 

several load values* a load-strain relationship can be determined 

from a single test. The results* which consist in most cases of 

quantitative relations between the load, the strain and the dimen­

sions and properties of the structural members, are directly applicable 

to any prototype that satisfies the similarity requirements.

L L h „ X I Z M  _ d * d »
* t* b* t* * L* t* L* PL* r* d * L *

* See flotation
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Few model studies of openings in the neighborhood of long wall

workings have been performed in the past, because of the difficulty

in duplicating the loading conditions and the strata movements under

unsymmetrical circumstances, which were described earlier in this
(ho)chapter. It has been Indicated by CAUDLE and CLARK that there 

is negligible difference in the bending and shearing stresses in a 

symmetrical beam whether it is loaded by either a uniform load, its 

own weight or centrifugal forces. To imitate, however, the load 

distribution and the strata movement of an actual mine opening in 

a model for an unsymai®trical case, a device utilising surface load 

is not adequate ami therefore two methods providing the necessary 

body forces remain:

(a) the usage of low-strength material causing deflection in

the model by its own weight (single body force). This effect might

be observed with gelatine and paraffine, or perhaps a low-modulus
(i*3)epoxy resin plastic as recently developed by HABER •

(b) a controlled increase of the body forces in the model 

material,

A centrifuge provides one facility for the second method and
(47)permits experiments independent of the material properties (BUCKY , 

PANEK*33’ 34f 35» 4l*, DALLY, DURELLI and RILEY*42**, HOEK and BERNER*45*, 

HOEK*4^*. The centrifugal acceleration has the effect of increasing 

the effective weight per unit volume of the material, thereby satis-
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lying the model-pro to type similarity conditions formulated by PAJHEK̂ *** , 

who has shown that centrifugal testing can be used for accurate 

analysis of body force problems. Similitude equations can be estab­

lished for the dimensions and properties of the model and the proto­

type, such as,

Lm -  I S  «>

E (6)

Where S is the model-prototype scale factor 

To obtain an effective weight of the model corresponding to a chosen 

scale factor S, the speed of the centrifuge can be controlled such 

that A, the ratio of the gravitational load w and the centifugal load 

Z, coincides with

Weffm

E E W
4 X  - f  s w p °r A  = r  w ? sp ^ p m

(7)

Gravitational load w * m g

m = unit mass

(8)

g acceleration due to gravity
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(9)
v * R<w » velocity

R «* radius of the rotor

* 2 r N

M * R.P.M.

Ratio A » Z/w a*
g R (10)

4 iT2R!f2

The factor A is a measure of what number of "g’s" is developed in 

the test,that is, what body force is allied in comparison to the 

weight of the model.

The theory of elasticity is a very powerful tool for solving 

stress problems tut the mathematical difficulties involved in its 

use increase when the shape of the investigated structure and the 

load applied to it become complex. Under these conditions, one may 

resort to experimental methods, of which photo-elasticity used in 

connection with models is a very simple and suitable one.

Photo-elasticity as Applied to Model Study (FROCffifi9 )̂
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In recent years* the development of new synthetic resins which 

posses® photo-elastic properties has led to modern model studies in 

the field of experimental stress analysis. A series of colored 

bands are observed in the model while under load when viewed by 

transmitted whit® light or alternate dark and bright bands called 

“fringes'* when using monochromatic light* Analysis of these stress- 

optical effects gives the distribution of the stresses acting within 

the model* the stresses in the small photo-elastic models used are 

directly proportional to the stresses in the prototype, if model and 

prototype are loaded below their respective elastic limits and if 

similitude conditions governing multi-material structures are 

obeyed ( M W K * * 1').

For the analysis of photo-elastic effects in model studies, 

the us© of circularly polarised light Is convenient* When the 

transverse vibrations of a light ray are confined to parallel planes, 

the light is said to be plane polarized. Either white or monochro­

matic light can be plane polarized. When two of these light waves 

having the same amplitude and frequency vibrate at right angles and 

a quarter of a wave length out of phase circularly polarized light 

Is obtained, this effect can be obtained by passing plane polarized 

light through a so-called quarter wave plate which consists of a hi­

re fringent material such as mica. When light falls on the plate at 

normal incidence it is resolved along two component planes at right
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angles and because the optical properties on the two planes are 

different, the two components are transmitted with different 

velocities* ihen they emerge from the plate, there is a difference 
in phase between the waves, which is proportional to the thickness 

of the plate* If this thickness is such that the relative phase 
displacement of the light of a given wave length is one quarter of 

a wav© length, then the plate is known as a "quarter-wave'* plate*
Almost all transparent materials, such as glass, celluloid 

and certain plastics become bi-refringent (or double refracting) 

when subjected to stress* This double refracting effect depends on 

the nature and intensity of the applied stresses and disappears on 

release of the stress* The transmission of light through bi- 

refringent flat plates subjected to plane stress within the elastic 

limits of the material obeys the following laws*

(a) The incident light at any point is resolved into two 

components which are parallel to the principal stresses at that 

point,

(b) The velocity of the transmission of each component is 

dependent on the magnitude of the principal stress in the plane 

along which It is transmitted*

The difference in velocity of the light (v. - v^) in the principal 

planes is directly related to the difference between the principal 

stresses (61 - G^)*
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v(v. - v.)
v; - c . - c<6i - c K) < 1 0X 2

where v * velocity of light in the medium surrounding the photo­

elastic model,

and = velocity of the light along the principal planes in the 

photo-elastic model,

C * constant.

The relation between the optical effects and the stress in the model 

is given by equations

S  • s  * C/y ^ 1  (12)

where t. and t. are the times of emergence of the light rays along the 

principal planes. The retardation t - t between the two waves 

emerging from the model is directly proportional to the difference 

in the principal stresses (Gj - Gg)* the thickness of the model T and 

the photo-elastic constant C/v of the material. By introducing another 

polarizing element, called the analyser, in the system, the retarda­

tion can be made visible as a single wave phenomena through the inter­

ference effects of the two waves leaving the analyser. The amplitude 

of the emerging wave is

S * CL sin 2 OC/ sin S I 2 (13)
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<PC being the angle between the plan© of vibration of the plane 

polarized light and the stress 6*̂  direction.

w angular frequency of the incident light 

CL m amplitude max.

Since the intensity of the brightness of the transmitted light is 
proportional to the square of the amplitude there will b® darkening 

of th® image of the model wherever conditions are such that equation 

(13) is zero* Such dark lines or bands are due to on© of two condi­

tions, namely:

(a) Points of constant difference between the principal 

stresses ( -Gg) called "fringes", when

_ t. - t9
J d , — & « Q)lflZF etc.

The bands from (a) also represent lines of equal maximum shearing 

stress, since

QTj ** Gjg 15 ^ f̂"vr> V

(b) Points of constant stress direction called lsocllnics, 

when C£ * 0° or 90°.

Th® previous statements indicate that both fringes and isoclinics 

appear when models are examined in a plane polariscope. "When white 

light is used there can be no mistaking the isoclinics which appear 

as black bands on the multi-colored isochromatic background. Whan
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monochromatic light is used, however, both fringes and isoclinics 

appear as dark lines and to avoid confusion it is desirable to remove 

th© ieoclinics for satisfactory examination of the fringes. Cir­

cularly polarised light is used for this purpose, and the setup of 

a circular polariscope is shown in Picture 8. Th© first quarter 

wav© plate converts the plane polarised light into circularly polarized 

light by producing a shift In phase of Kf? between the two waves 

passing through it, and th© second quarter wave plate nullifies this 

effect. The fringe order can be determined with ease by starting 

from th© zero order fringe. The difference in the principal stresses 

or the maximum shearing stress are found by equation:

2 rmax
n f 
T

n « fringe order, 

f *» material fringe constant,

T « thickness of th® model.

The material fringe constant f relating the optical effects and the 

stresses in a photo-elastic model has a unique value for each bi- 

refringent material. Its numerical magnitude can be obtained by cal­

ibrating the material by means of a model for which there is a known 

theoretical solution for the distribution of stresses.
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Picture 8. Polariscope
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"Stress-freezing” Technique In Model Study<44, 45, 46, 4?)

The utilization of a centrifugal loading device restricts th© 

selection of the model materials. For a photo-elastic analysis, a 

material demonstrating the phenomena of bi-refringonce when under load 

is required* In addition it should be elastic, transparent and easily 

machinable* These properties, although present for a number of 

plastics, were not sufficient for the research contemplated, since 

a model cannot always to® analysed while in a centrifuge, and th© 

photo-elastic characteristics of most plastics normally disappear 

after removal of the load.

’.Yhen heated to a specific temperature, some thermo-setting 

resins become "rubbery” and deform quit® easily under small loads 

(42, 43)^ -j-f allowed to cool while under load, these resins become 

rigid again and when the load is removed, it is found that they retain 

both the strain and the fringe pattern developed while in the thermo­

plastic condition. That is, th© fringe pattern has been "frozen” 

into th® model; this torn being used metaphorically* The Investigator 

Is, therefor®, free to examine photo-elastically the model at any 

time after the removal of load*

The stress “freezing” technique was practiced with Aldarite B 

by the Hatlonal Mechanical Engineering Research Institute of the 

South African Council for Scientific and Industrial Research, Pro-
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The stresses were frozentorla (HOEK and and H O E K ^ ^ .

in under centrifugal load by means of two insulated fumaoes which 

are attached to each end of the rotor of the centrifuge. Power was 

delivered to the furnace heaters through heavy current slip rings 

and the temperature was controlled by means of an automatic tempera­

ture controller.

To avoid th® problem of heat control in the stress ’'freezing" 

technique, a new epoxy resin was developed and tested by the Armour 

Research Foundation of the Illinois Institute of Technology, (DALLY, 

DtIRELLI and RILEY* ̂  and CORELLI and KOBAYASHI*^. Manufactured 

by the CIba Company, Inc. Kimbertoan, Pa., the plastic is known 

commercially as Araldlte 502. The properties of the resin can be 

varied over a wide range by mixing it with compatible plasticizer 

such as dibutyl phthalate. The composition used in the study of the 

above mentioned authors was obtained by mixing 72$ resin with 20$ 

dibutyl and araldlte hardener BB 951» The manufacture of the 

plastic was accomplished by mixing the three constituents (all being 

liquid) In the proper proportions and pouring the resultant mixture 

into a suitable mold.

Since the chemical reactions between the three constituents 

with this the curing process, progresses over a time of more than 

20 hours, the properties of the material change during this time 

continuously. The fringe order varies due to a combination of effects:
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(a) Creep* which is very pronounced, increases the fringe 

order at a particular point in the model as a function of time,

(b) The material chemical, mechanical and optical properties 

change as the curing progresses#

It is important to note, however, that the pattern always represents

th® elastic distribution of stress in the model while loaded. This

fact explains the great advantage of the material.

For a composition of resin/dibutyl/hardensr of 72/20/8 proportions, 
(bk)DALLY et al*' , determined th© change of the properties using a 

circular disc as an example for three significant times; t., imme­

diately after loading, t», 4 hours after loading (Just prior to un­

loading) and ty 16 hours after unloading (permanently cured),

TABLE 2 ****

Poisson*s 
Ratio

Y

Modulus of 
Elasticity 
E (psi)

Material fringe 
value f

(psi-in/fringe)

Figure of merit 
E / f

(fringe/in.)

\ 0,366 993 2,44 406

s 0*466 675 1.56 432

0,405 926 2,56 362
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In Figure 13 the fringe order Is plotted against position on 

the horizontal diameter of a disc with time as parameter. The curve 

for t^ and the corresponding property values can be used in a final 

analysis.

Application of Model Study to Roof Bolting

(21)As early as 1952* JACOBI performed the first experiments 

concerned with the application of roof bolts in stratified rock 

under symmetrical conditions with gypsum models. He assumed that 

the foot wall had no influence on the bolting effect and made this 

part of the model of massive gypsum, Sid® walls and roof consisted 

of a sequence of plates of 5 ssa thickness each. In models without 

any bolt support, cracks were observed at the lower surface of the 

beam in th© middle of the span at th® point corresponding to the 

highest bending stress. With increasing load, two other cracks 

oecured at th© top of the beam near the abutments as might be ex­

pected. The latter cracks continued downwards and upwards into the 

next beds, converging to form an arch, showing th© well known shape 

which is often observed underground,

A different behavior was observed for a case where k bolts 

were installed at angles of lass than 95°; two to each side, through 

5 beds. Neither arch nor cracks were formed, but instead the whole 

compound beam was pressed into the abutments* Th© beam did not

50
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Curve 1 
Curve 2 
Curve 3

Immediately after loading 
4 hours after loading 
16 hours and 64 hours after loading

c
<£
UJOcco
UJ CDz
QCu.

POSITION VD

z z z z z z z z n

U 2 Z Z 2 Z Z Z A

Figure 13
ringe order along horizontal 
iameter of a disk with time

(after Dally at al.)
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fail, when subjected to an even higher load. For this test series,

Jacobi used a conventional uniform loading device.
(32. 3& 35)PAHER * * started a series of symmetrical model tests

in 1955* as applied to roof bolts. In order to obtain natural con­

ditions , he used a centrifugal testing apparatus, installed in the 

Applied Physics Laboratory, Bureau of Mines, U.S. Department of 

Interior, College Park, Md* His model material was Indiana or 

Alabama limestone cut to proper dimensions. Panek developed the 

model-pro to type relations by using the dimensional analysis method 

and obtained two general expressions for roof bolting design formulas 

for the strain £ and the deflection D in terms of the structural 

varibales:

L L h 
t* b ’ t* (15)

D 0.265 (bL2)
4 [kP (h/t - l)/h] (16)

where

P * bolt tension 

b » spacing between the bolts 

h » length of the bolt 

K » bolt per ft., across the opening
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Panek assumed that certain model-prototype similarities could be 

relaxed without invalidating the results and by this, minimised the 

number of variables to be studied, and extended the applicability of 

quantitative test data to a large class of full scale structures.

Equation (15) is written for strain rather than for stress, 

because Panek found it convenient to work directly with strain 

measurements. Electrical resistance strain gages were bonded to 

th© limestone beds and strains were measured by conventional methods.

The solution of th© roof bolting design problem consists of 

finding a function for th© right-hand side of equation (15) which 

can be used to calculate the effect of the independent variables.

It was mentioned previously in section II B that the reinforcing

effect of roof bolts can Include a component due to friction and a

component due to suspensions While Panek*s first series of model

studies dealt only with the friction effect, since he used beds with

equal thickness, his investigation was later extended to include
%, * (33)models built with beds of different thicknessw .

When a sequence of layers is loaded in a centrifuge by variable 

forces, different flexures will occur for each bed and any model study 

with roof bolts has to consider both friction and suspension effects. 

By an iterative trial-and-error method Panek found that the combined 

effects of friction and suspension are given by:

<3,  ,  -  S t  <» + DrHl + V (17)
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where G~  _ ** outer-fiber bending stress when both friction andf s
suspension effects are present*

GT«», 58 outer-fiber bending stress when neither friction

nor suspension effects are present*

The fractional change in the outer-fiber bending stress due to 

friction* D_, is given try

Df * 0.375 (bL)^ PKF (18)

and th© fractional change in the outer-fiber bending stress due to 

suspension* D , is given by

Dg *  1.080 ut  ̂ (1 -  b/L)"1 (  | -  l )  (19)

1 * u. « relative flexural rigidity.

As a final result he derived 3 equations for stress, deflection and 

coefficient of the bedding-plane friction which are applicable when 

both friction and suspension effects are present:

G*f B * (1 + Df)(l + /3d s) (20)

Sf a  *  (1 ♦  Df ) ( l  ♦  ^Da) (21)

Ff , (22)
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* being factors varying with the location and number of points 

of attachment (bolts)* Equation (20) can be used for design purposes, 

since the reinforcement factor due to bolting may be calculated from 

it. Equation (21) can be used for field evaluation of a roof bolting 

system based on roof deflection mearorements. Finally equation (22) 

can be used to calculate the upper limit for the roof bolt tension 

that Is required to prevent strata separation at the bolt location.

In 1956, JQHMSTON performed a model study with photo-elastic 

material and plaster in the laboratory of the Royal Technical College 

in Glasgow, Scotland* Using a conventional loading device he showed 

by photo-elastic analysis for a symmetrical opening that roof bolts 

as a suspension support diminish the bending stress at the lower sur­

face of the beam and the shearing stresses at the abutments. He was 

able to visualise a similar effect for a compound beam and also for 

an opening with an arched shape* Calculations in the latter case 

resulted in a reduction of the bending stresses up to 38$ when high 

pre-tension of *the bolts was applied.

The photo-elastic materials used for the construction of the 

models in this investigation were Columbia resin (CR 39), bakalite 

(BT/6l/893)» catalin and perspex, the last being used only for the 

determination of iso clinic lines* Bolts were made of 0,065 in* diameter 

wire, threaded to take No. 10 BA nuts with bolt plates and roof bars 

made from copper sheet*



www.manaraa.com

55

LANG*37* In th© United States and KOZINA*38* in Russia performed 

similar photo-elastic studies with plastics of roof bolt situations.

In order to find the effect of a single, regular joint pattern in the 

strata on roof bolt performance, tang constructed a model of approxi­

mately 640 pieces of plastic, 1/4 In. thick. Th© stress distribution

was highly complex and gave no fundamental information.
{4GlFinally a model study of BALS must be mentioned which is 

of particular Interest, since the chosen conditions are closer to the 

present subject than those of any other investigation. Bals simulated 

stratified rock in unsymmetrical conditions by paraffine models mixed 

with sand. He took into consideration that the stresses in the gate- 

road roof change continuously with the advance of the face (see 

section II A). Therefore, he assumed that the demonstration of the 

stress distribution in only one plane across the gate-road was not 

sufficient and for this reason constructed a three dimensional model 

as shown in picture 9» “Hi® "S"-curve of convergence discussed 

previously can be followed on one side of the opening and the model 

shows how the immediate roof is subjected to a continuous change in 

its bending and shearing stresses. Although Bals did not perform any 

model studies with roof bolts, he concluded that installation of roof 

bolts in gate-roads must consider the three dimensional aspect of 

strata movement. This was deemed possible by inclining the bolts at 

certain angles to the long axis of the opening as well as to the
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abutments» Efer this means* he believed a solution for roof bolt 

application at any stage of the passing face was obtained. Two of 

his pattern proposals, derived from his conclusions, are given in 

Figure 13.
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Picture 9. Three-diraen3tonal Model representing 
a Section through a Long Wall Gate-Road (after Bals)
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CHAPTER H I

MODEL STUDY OF THE APPLICATION OF ROOF BOLTS 

UNDER UNSYMMETRICAL LOADING CONDITIONS

Based on the literature study concerned with (l) th© stresses 

and movements in the strata around openings, (2) with th© theory and 

practice of roof bolting in stratified rock and (3) with model study 

in general and as applied to roof bolting in particular, the 

following theoretical background, instrumentation and materials 

were used in the investigation presented in this thesis, to Indicate 

th© stress effects of roof bolts in long wall gate-roads by means 

of small-scale models:

(a) A centrifuge as loading device simulating variable body 
forces as occur in the strata a round long wall gate-roads,

(b) Elastic, transparent and easily machinable models simu­

lating the structural conditions of long wall gate-roads and the 

surrounding strata,

(c) Epoxy resin Araldlte 502 mixed with plasticizer such as 

dibutyl phthalate and hardener HN 951 as a model material, providing 

the properties needed for the "stress-freezing** technique in the 

centrifuge during the test procedure,
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(d) Installation of small-scale roof bolts in the models 

obtaining the anchorage effeet by quick-setting cement,

(e) Mechanical cutting, shaping and grinding instrumentation 

to machine and polish the models after unloading,

(f) Theory of elasticity as applied to optical effects 

(photo-elasticity) for the theoretical analysis,

(g) A polariscope for the experimental analysis.

Theoretical Background of th© Experiments

Referring to discussion of the theory of similitude in the 

review of literature the stresses in prototypes and that induced in 

models under load can be expressed by equation (23)^^^,

J raaxp wp Lp
jr * w L A Jmax m m

fp
Em

(23)

where the suffixes p and m refer to prototype and model and

T * the maximum shearing stress at the point under con­

sideration,

w » specific gravity of the material,

A « acceleration applied to the model, in multiples of the 

gravitational acceleration (g*s),

L a span of the opening,

E » modulus of elasticity.
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Since a photo-elastic material Is used, the maximum shearing stress 

in the model can be expressed in terms of isochromatic fringes pro­

duced under load.

max
fn
2T (24)

where f » material fringe value,

n ** fringe order at the point under consideration,

T * thickness of the model.

From equations (23) and (24) the fringe order in the model can be 

related to the maximum shearing stress in the prototype by the 

following equation*

c- * X a  J ?P— B J 2T A w Lmax » m
(25)

The purpose of this experiment is to find the stress distribution 

in models with and without bolts, and particularly the bending 

stress at the outer fiber of the immediate roof where failure occurs 

due to high tensile stresses. On a free unloaded boundary, the 

principal stresses lie along and normal to the edge, respectively. 

The principal stress normal to the boundary, determined as is

always zero and the equation

if* m&2
max 2 (26)
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reduces to

Tmax * 6^/2

\ a 2 T max

m
» ELI 

T (27)

“TIi® fringe order can be dote mined with the aid of the polariscope 

and by the ns© of equation (2?) the maximum bending stress for models 

with and without bolts is found, since the specific material fringe 

value and the thickness of the model is known* Variation of the 

bedding plane slip, the "plug-effect*, the shearing and tensile 

reinforcement, although impossible to evaluate separately, influence 

the stress distribution. The results of a model analysis which 

includes these factors can give an Indication of the bolt pattern 

with the highest efficiency for the prototype.

Experimental Instrumentation 

Centrifugal Testing Apparatus

Th© centrifugal testing apparatus (Picture 10), installed in 

the Research laboratory. Department of Mining Engineering at Missouri 

School of Mines and Metallurgy, comprises the following basic elements:
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(a) Rotor,

(b) Model holders and counterweight,

(c) Housing tank,

(d) Accessory equipment (balance, vacuum device, motor,

speed control and stroboscope),

Rotor* the rotor consists of a boxlike structure made of bar®I ---
f-inch aluminum alloy plate, which is mounted on a vertical 2.5-inch 

forged steel shaft. Th© inside dimensions of th© rotor are 72 x 33 

x 6 inches* This gives a radius of rotation to the base of the 

modelholder on one, and the counterweight on the other extremity 

of 36*0 inches. An I8~inch wide opening through the rotor permits 

observation of the model.

Equation (10) shows that the loading ratio A is proportional 

to the radius and the square of the speed of rotation. The maximum 

usable radius of rotation is fixed once the machine is built; during 

the test series, A was varied by controlling the speed of rotation.

To be able to test moderately deep models, it is desirable to have 

as large a radius as is practicable, thereby minimizing the per­

centagewise variation in radius of rotation throughout the depth 

of the model. The ratio of rotor radius to model depth of 36 : 1,5 

inches is insignificant for this study, and, therefore, no corrections 

for the effect of radius variation across the model depth were con­

sidered.
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Picture 10* Centrifugal Testing Apparatus*
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CM)The design of the rotor was based on a maximum speed of 

1,500 R.P.M. but for the experiments with plastic as used In this 

study* the speed always ranged below 500 R.P.M. and did not approach 

the utmost limit of the capacity*

The upper shaft-bearing housing is bolted to a 15-inch struc­

tural steel channel* which is in turn bolted to a supporting frame­

work of 12-inch structural steel channels. The frame system is 

anchored to concrete walls surrounding the centrifuge tank. The 

whole installation is mounted on another channel set, 6 feet below 
the floor level for safety reasons.

Modelholders and Counterweight. For the study of stratified 

mine roof* the model consisted of beams lying one upon the other 

across the opening. Since these composite models were difficult 

to keep in position during a test, particularly in the unsymmetrical 

case* a special holding device was constructed. The model was at 

first mounted in a small model holder (Picture 11) with horizontal 

dimensions of 1? x 3 indies; the height was varied according to 

the requirements in different tests by wing nuts. This holder 

could be set with ease into a larger holding device (Picture 12) 

and the combination with a total weight up to 90 lbs. was inserted 

in on® wing of the rotor. During the test, the model holder was 

supported at the end of the rotor, the model beams being vertical 

(parallel to the axis of rotation).
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Picture 11« Model Holder I and IX

Picture 12* Model Holder II
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The counterweight, similarly supported, (insisted of a 

variable number of interchangeable metal plates of different 

weight* Its weight was balanced against that of the model holder 

combination (Picture 13)*

Housing Tank* To minimise th© driving power req\xired, the 

centrifuge is operated in a 88-inch diameter tank (Picture 10) in 

a vacuum up to 28 inches mercury. The tank is welded to the upper 

and lower shaft-bearing housings and is sealed against the passage 

of air*

(a) between the flanges joining the head to the lower part 

©f the tank by rubber gaskets,

(b) between the flanges of the two observation ports and

the top access port (through which the model holder and the counter­

weight is inserted) by flat rubber gaskets,

(c) around the shaft where it passes through the head of 

the tank by a shaft seal*

The two 20-inch observation ports are closed by tempered 

plate glass portlights one inch in thickness* Two ports are pro­

vided, so that either side of the model can be observed and photo­

elastic measurements can be performed on rotating models, if these 

are thin and transparent enough*

68



www.manaraa.com

69

Accessory Squlpiaent« To avoid vibration and any damage, an 

exact balance of both wings of the rotor is necessary. Therefore 

it is not sufficient to check the weight of the model holder and the 

counterweight by a normal weighing machine, since the center of 

gravity is in a different position for each item due to the varia­

tion in weight distribution, A special apparatus was constructed 

(Picture 14) duplicating the dimensions of the rotor and proper 

results could be achieved by adding metal plates to the counter­

weight until the device showed a balance,

A vacuum of 25-28 inches mercury in the tank was obtained by 
a vacuum pump, type 30, model V 23 A, manufactured by the Ingersoll- 

Rand Co, It is a base-mounted, single cylinder compressor driven by 

an A.C, motor of 3/4 HP*

The driving device for the oentifuge is a motor with specifi­

cations s 10 HP, 1,750 R*P,M, base speed, 240 Volt input drawing 

38,3 amps at full load. The motor is supplied by a Select A Spede 

Power Unit (220 Volt, 3 Phase, 60 Cycles) with A.C. input and 230 

Volt D,C. output,

A rheostat speed control is combined with the driving set of 

the centrifuge, which enables the operator to maintain acceleration, 

deceleration and constant speed with ease,

A strobe lifrht mounted in each observation port and directed 

towards the opposite port, flashes on the rotor when it is at the
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correct position for viewing, A slip ring around the shaft contacts 

strobe trigger brushes which provide a steady illumination of either 

the specimen or the counterweight for five different positions of the 

rotor (0°, + 5° and + 10°). The view provided by the strobe lights 

in the centifuge is brought to the level of the operating console by 

means of a periscope.

Photo-elastic Equipment

A photograph of the polar!scope used, installed in the 

Laboratory for Experimental Stress Analysis, Mechanics Department, 

is reproduced in Picture 9* This instrument is a lens type 

bench polariseope which has a 12 inch-diameter parallel light field. 

It ©an be used for transmitted light, photo-elastic studies. The 

optical components have been corrected for the use with monochromatic 

green light (5,^61 Angstrom units) produced by a high-pressure 

mercury vapour lamp. The polarizer, analyser and quarter wave plates 

can be rotated by hand as required in the analysis. A camera was 

used in conjunction with the polariscope to obtain direct photographs 

of th® fringe distributions in the * stress-frozen” models.
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Model Design

Sine© the nstress-freezing” technique described in Chapter II 

was used in this 3tudy, Araldite 502 was chosen as model material 

and was mixed with dibutyl phthalate plasticizer and hardener HM 951 • 

Preliminary tests for developing an experimental technique for the 

use with unsyrametrically loaded models led to the conclusion that 

convenient dimensions for the construction of the model were: 

beam depth « 0*5 in.

beam length = 9*0 in.

model thickness « 1.5 in.

span of the opening * 3.0 in.

height of the opening = 1.5 in.

These measurements were limited partially by the construction of the 

centrifuge and the model holder, respectively, and partially by the 

acceleration effects of the centrifuge. A model less than 1.0 in. 

thickness was found to be affected by even slow angular accelerations, 

whan it was not confined on both sides, and bending in the third 

dimension and twisting occured, when one abutment was replaced by 

sheets of foam rubber in order to simulate the unsymmetrical case.

To eliminate this distortion a thickness of 1.5 in. was chosen.

The height of the opening was unimportant because it did not affect
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the stress distribution in the immediate roof around the bolts* 

Figure 15 shows a three-dimonsional model incorporating th® features 

outlined above, which was cut into convenient slices for analysis 

when the loading process was finished*

Tost Procedure

The significant properties of the photo-elastic material as 

described previously and the various time dependent steps during 

the test procedure made a standard time schedule necessary* This 

was developed after a series of preliminary tests following the 

experiences of BALIA' et al. * The schedule was followed as 

closely as possible to eliminate errors due to time effects in the 
material and to obtain comparable results (Figure 15)*

Casting and Curing Process

To build a model as described above, it was found convenient 

to prepare a mold as shown in Picture 15* Two plates of luclte were 

clamped together with spacers on three aides providing the required 

thickness of 0.5 in. for th© plastic* The low viscosity of the 

epoxy resin mixture made it necessary to securely tape three sides 

of th© mold to avoid any possible leak*
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The three constituents were weighed carefully to obtain a 

72/20/8-ratio of epoxy resin, dibutyl phthalate and HN 951 hardener 
and mixed in a beaker of suitable size* After stirring approximately 

5 min. the mixture was poured into the mold and its exterior was 

kept under a steady temperature of 78° F* By this means some of 
the heat developed by the exothermic reaction between the hardener 
and the resin was carried away. No mold release material was needed 
since it was easy to remove the semi-cured plastic from the lucite 
plates after about 12 hours.

Preparing Model for Test

After 12 hours, a plastic with the consistency of a hard rubber 
eraser was obtained. The plate, 12 x 6 .5 x 0.5 in. in dimensions, 
was cut with a band saw, forming **■ beams of 9*0 x 1,5 x 0.5 and 2 
beams of 3*0 x 1,5 x 0.5 in. The beams were put together to fabricate 

a model representing the area affected by one roof bolt set across a 
long wall gate-road. No changes were made in the construction of the 

model during the final test series. Both sides of the composite 

model were planed by means of a shaper and a uniform thickness of 

1.50 in. was maintained. It was verified that the machining process 

did not cause any residual stress in the plastic.

Since only the roof and one layer in the abutment strata were 

constructed from active plastic the model was completed with beams
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of reinforced gypsum sheets# For the unsymmetrical case, two of the 

plastic beams in the abutment were replaced on one side by four foam 

rubber sheets (Picture 15)• The model was completed with a lead 

sheet of l/t6 in* in thickness on top increasing the effective weight 

of the model under centrifugal load*

Roof bolts were installed in this model study, using for the 

first time a new method developed successfully in the German Coal 

Mining Industry for full scale structures, in which the anchorage 

effect is obtained by a quick setting cement. In the full scale 

application, cartridges filled with resin and a separate container 

with hardener are pushed into th® hole with the bolt and destroyed 

so that the resin-hardener s&xture glue the threaded bolts to the 

ro c k ^ ^ *  A seal around the bolts keeps the resin in position until 

after a sotting time of 30 min, pretension can be applied. Although 

the technique of installation was simplified In the model study, the 

basic idea of this kind of anchorage effect was utilized. Steel 

bolts of l/l6 in, in diameter and proper length were threaded on 

both ends. One end was emersed in cement (Eastman 910 Adhesive) and 

Inserted into the 3/32 diameter holes# After a setting time of 

approximately 20 min., the bolts were prestressed with steel nuts 

by hand. Vhshers constructed for various angles provided proper 

installation of the bolts (Picture 16)«
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Plcture l6» Roof Bolts, Washers and Nuts as used in 
the Model study*
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The rotation of the centrifuge about a vortical axis made it 

necessary to mount the model in such a way that the beams would toe 

vertical* Model holder II (Picture 12) was designed to provide this 

position of the model during the test. The upper steel plat© of 

this device was adjusted before each test so that it barely touched 

the model* Vhen load was applied, the model separated from the 

plate and was only influenced by its own weight, since the plate 

was kept in position by stopnuts and its 3 /16  In* thickness resulted 

in a negligible bending. Tills separation was actually observed by 

means of th© stroboscope and was estimated to be up to 0*5 in* on 

th® yielding side. Eight steel bolts on each side of the model holder 

prevented shifting of the model* This device was found necessary 

since several test© had to be stopped because the model changed its 

position or even fell free in the tank* After balancing the model 

holder combination (I and II) against the counterweight, both items 

were Inserted through th© access port into the rotor wings and the 

model was placed in the center of the observation opening of the 

rotor* The vacuum was brought up to about 15 in* mercury before the 

centrifuge was started; the required speed being reached after 

approximately 15 min* running and kept constant with high accuracy 

over the whole length of the loading process of h hours. Although
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a considerable* amount of material creep occured during the test, 

th© results are not Invalidated as was mentioned previously in the 

discussion of the '^stress-freezing** technique.

79 '

Preparing th© Model for Analysis

After a running time of the centrifuge of 4 hours, the curing 

process was finished for the purpose of the test and the stress dis­
tribution which had existed under load was "locked” in the model. At 
this point, however, an analysis of the fringe pattern developed in 

the centrifuge was not possible, since the thickness of 1 .5  in. 

showed a high interference and absorbed too much light of the 

polar!scope. The model thickness had to be reduced and, since the 

fringe distribution observed in the model is dependant on the 

thickness (equation (27)), an accurate method was required. An 

attempt was mad© to keep the temperature during the machining 

process as low as possible, since it was not known, what effect 

heat could have on a stress-frozen model. 'While cooling the 

exterior with an electric fan, a shaper was used, set on low speed 

and taking light cuts to decrease frictional heat* During the first 

part of the test series the models were shaped to a thickness of l/2  

in. Later this was reduced to 3/8 in. to obtain more distinct 

fringe patterns which were found to be very complex.
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In a further improvement of the specimen preparation for 

analysis, the surfaces of the slices were polished on both sides 

on a grinding table* Aluminum oxide was used as a polishing 

material and as a result, "stress-frozen'* models representing an 

approximate two-dimensional section through a long wall gate-road 

whore roof bolts are installed was obtained (Picture 17 and 18).

The fringe patterns could be read with relative ease and photographs 

were taken as permanent records*

Analysis of the Models

The experimental investigation included 20 tests in the centri­

fuge designed to give information about the "stress-freezing" 

technique, in general, and roof bolt installations in stratified 

rock, in particular. The test data and the correlating remarks are 

listed in Table III, and photographs of some of the fringe patterns 

are shown in Pictures 19 - 29.

The test series was started with models representing a symmetri­

cal case, to prove that the body loads developed in the centrifuge 

act symmetrical within the model* Since there is negligible differ­

ence in the bending and shearing stresses in a symmetrical beam, 

whether it is loaded by uniform load, its own weight or centrifugal 

forces, the stress distribution and the fringe pattern, as it should
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Picture l?. Unsyiasietrical Model after Shaping and 
Polishing.

Picture 18* Syssaetrical Model after Shaping and 
Polishing with Roof Bolts*
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Date of Test No. of 
Test

Symmetry
of

Loading

Roof Bolt Support 

H.= Holes; B.= Bolts

R.P.K.. A

" g » S *

Remarks

April 27» 62 1 Syxa. None 350 117 Poor isochromatics

April 29, 62 2 Sym. 3 H.(90°,90°,90°)* 350 117 Symmetrical Fringe Pattern, 
Hole-Displacement not 
equal on Both Sides.

May 3, 62 3 Unsya. 3 H.(90°,90°,90°) 350 117 Model broke after 2 Hours.

May 8, 62 4 Unsym. 3 H.(90°,90°,90°) 300 86 Model changed Position 
in the Model Holder.

May 10, 62 5* Unsya. 3 H.(90°,90°,90°) **00 152 Holes do not influence 
Stress Distribution, 
Proper Hole Displacement.

May 15, 62 6 Sym. None 360 123 Symmetrical Fringe Pattern

May 16, 62 7 Unsya. None 360 123 Reading of Fringe Order 
Possible.

May 23, 62 8 Sym. 3 B.(90of90°,90°) 360 123 Anchorage Effect not 
Equal for all 3 Bolts

* Indication of the Bolt or Hole Inclination across the Opening the Direction of Inclination is
shown by Arrows.

♦ Change In the Construction of the Model Holder.
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Date of Test So. of 
Test

Symmetry
of

Loading

Roof Bolt Support 

8*® Holes? B.® Bolts
R.PJI. A

*g»8"

Renarks

June 23* 62 9 Unsya* 3 B.(90o#90o,90°) 360 123 Lower Bean failed in 
Tension near the center 
Bolt

June 24, 62 10 Unsya* 3 H.(45°>90o,45°) 360 123 Failure in Tension in 
the Lower Beam

June 25, 62 11 Unsya. 3 B.(45°,90o ,45°) 360 123 Fracture Zones around 
the Bolts

June 27, 62 12 Unsya* 1 B*( - ,90°, - ) 300 86 Three Beans of the Imme­
diate Roof showed Tension 
Cracks around the Bolts*

June 29, 62 Vi Unsya* None 300 86 Change in Yielding Device, 
Proper Fringe Pattern*

June 30, 62 14 Unsya. 3 H.(90°,60°,45°) 300 86 No Influence of the Bole, 
to the Stress Distribution,

July 1, 62 15 Unsya* 3 B.(90°,60°,4f) 300 86 No exact Determination is 
Possible*

July 2, 62 16 Unsya* 1 B.( - , - ,45°) 250 86 Good Results

July 5, 62 17 Unsya. 2 B.( - , 45?45°) 300 86 Good Results

July 6, 62 18 Unsya. 1 B.(60°, - , - ) 300 86 Good Results
July 8, 62 19 Unsya* 3 B*(90°,90°,90°) 300 86 Good Results

July 9* 62 20 Unsya* 3 B.(60°,60°,45°) 300 86 Good Results
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Picture 19» Test (6): Fringe Pattern of a Symmetrical 
Model*

Picture 20* Test <7): Fringe Pattern of an Unsymmetrical
Model.
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appear* was known from tests with conventional loading devices. In 

tests (1) and (2), symmetry was not obtained. An indication of the 

horizontal strata movement was* however* visible in test (2) as 

displacements in the three vertical holes drilled through the beams.

The hole at the opening midspan showed no displacement. Although 

the isochromatics were found to be unsymmetrical, probably due to 

uncontrolled eccentricities in the model or model holder design, the 

test showed that the bolt holes before bolt installation did not 

influence the fringe pattern. Test (6), performed as a repetition 

of test (1), at a later date* incorporated model holder changes 

developed in the intervening series of tests. As shown in Picture 

(19), th© bending stresses are similar in each of the three beams 

immediately above the opening while the stress concentration above 

both abutments decreases rapidly from the lower to the upper beam.
In test (3)» where the first unsyranetrical model was loaded* 

the specimen fell free in the tank. As a consequence* the number 
of "g»sM was reduced from 117 to 86 (300 R.P.M.) in test (4), but 
once again* parts of the model changed position in the model holder* 
when the convergence on one side was increased by the acceleration 
process* and the experiment had to be stopped. After the change in 

the construction of the model holder II described previously, another 

unsymmetrical model was tested (5) at a speed of W O  R.P.M. (152 *’g*8")* 

The first useful results were obtained from this experiment, since
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the hole displacements gave an indication of the strata movement 

under unsymmetrical conditions and the most distinct fringe pattern, 

up to that time, allowed qualitative readings, although not suffi­

cient for precise analysis*

A test of an unsymmetrical model loaded without any holes or 

bolts was performed in experiment (?)• Picture (20) of the fringe 

pattern in the model gave the first measurements of the change in 

stress distribution which occured when the rigidity of one abutment 

was reduced, as simulated in the unsymmetrical model* From the 

comer of the rigid abutment, high stresses propagated upwards 

into the upper beams with particularly high bending stresses in 

the top fibers of the first and second beam. In comparison with 

the symmetrical case (Picture (19)), the shearing stresses have 

increased and decreased, over the rigid and yielding abutment, 

respectively* In the symmetrical case, the bending curve shows two 

symmetrically located points of inflection, which coincided with 

zones of maximum shear, as can be observed in Picture (19)* In 

Picture (20) illustrating the unsymmetrical conditions, the zone 

of shear near the rigid abutment is (a) more distinct and (b) has 

moved towards the middle of the opening, while the shear magnitude 

near the yielding abutment has diminished* A later repetition of 

test (7), test (13)* performed under lower loading conditions, con­

firmed the first results and showed an even more pronounced differ-
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Picture 21. Test (13)* Fringe Pattern of an Unsyrornetrloal 
Model.

Picture 22. Test (8): Fringe Pattern of an Unsymmetrical
Model with three Vertical Roof Bolts.
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ence in the shear stress in comparison with the symmetrical case, as 

seen in Picture (21).

The location of the point of inflection nearest the rigid 

abutment will depend on the amount of convergence in the yielding 

abutment and on the rigidity of the strata comprising the beams.

In this investigation a complete analysis of the variation in location 

of this point was not attempted, since the convergence and the beam 

stiffness was kept constant; however, there is no doubt that the 

exact location of this shear zone near the rigid abutment must be 

considered in the application of roof bolts. The influence of the 

inflection points on the roof bolt pattern will be discussed in detail 

in the analysis of the later experiments.

Experiments with actual roof bolt applications were continued 

based on the information obtained about the unsymmetrical stress 

distribution in a bedded strata above openings. However, before 

bolt patterns were tested for unsymmetrical cases, a simple symmetri­

cal model was chosen to evaluate the anchorage method utilized in 

this study. No previous knowledge existed as to the Influence of 

a bolt which is cemented to the surrounding material over its whole 

length, on the stress distribution in the strata. Conventional roof 

bolts are anchored only at one extremity, and have contact with the 

surrounding rock only if shear forces are applied to them by bed 

displacements. With cement as a continuous, rigid filler between
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the bolt and the hole wall* a bolt can take and transfer stresses 

at any point over its length. %• this phenomena, stress concentra­

tions in small areas, i.e, around th® wedge or shell, and the washer 

of a conventional bolt, can be prevented and can be distributed to 

all beams in which the bolt is cemented* In test (8) the first 

attempt was made to glue three vertical bolts, equally spaced over 

th© opening span, through three beams* Although the resultant fringe 

pattern shows some asymmetry, which may partially be due to unequal 

pre-tension of the bolts, it can be stated qualitatively that the 

bending stresses which occur are considerably decreased and the 

shear zone near the right abutment in Picture (22) is less distinct. 

Stress concentrations near both corners of the opening above the 

abutment were reduced. It is worth mentioning that the reduction 

was equal on both sides of the opening although the two outer bolts 

had different effects on the material in their immediate area* In 

th© case of the bolt on the left side, in Picture (22), where com­

plete bonding probably occured only in the upper beam and which is 

therefore comparable with conventional bolt installation, the only 

major effect was a reduction of the stress concentration over the 

abutment. The difference in stress distribution around these two 

bolts might have been partly due to higher pretension of the left

hand bolt
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Picture 23* Test (l4): Fringe Pattern of an Unsymmetrical 
Model with three Holes (*+5* 60° and 90°)*

Picture 24. Test (15)* Fringe Pattern of an UnsynMetrical
Model with three Roof Bolts (90°, 60 and 45 )•
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In spite of the success of test (3), the following tests gave 

no further information. In test (9)» three bolts were installed in 

the same pattern as in test (8), in an unsyramotrical model* but 

tension failure was observed in the lower beam near the center 

bolt. The results of test (10) are shown in Picture (30)* where 

three holes were drilled as cited in Table III. The lower beam 

failed in tension over the rigid abutment followed by a tension 

crack at the other end after full load was applied for two hours 

(360 R.P.M.)• Test (11) and (12) again developed fractures when 

roof bolts were installed under unsymmetrical loading conditions* 

indicating the high magnitude of the stress developed under certain 

unsyrometrical loading conditions.

The rigidity of the yielding abutment was reduced during the 

later tests so that the deflection curve of the beams in the roof 

of the opening contained only one inflection point* corresponding 

to the curve most commonly seen in the roof strata during long wall 

mining operations. This change produced higher bending stresses in 

the beams* and* therefore* the test series was continued with a lower 

applied load (86 ”g*s" at 300 R.P.M.). Test (13) was a duplication 

of test (?) under these new conditions and the presence of a single 

point of inflection was verified. In the next seven tests (14 - 20), 

all structural and nearly all loading conditions were kept constant* 

and only the hole and bolt pattern was changed to systematically
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Picture 25. Test (16): Fringe Pattern of an Unayssnetrlcal 
Model with one Hoof Bolt (^5°)«

Picture 26* Test (17): Fringe Pattern of an Unsymmetrical
Model with two Hoof Belts V*5 and ^5 )<*
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Pictures 27. Tost (13): Fringe Pattern of an Unsyvsietrical 
Model with one Hoof Bolt (60°).

Picture 28. Test (19)* Fringe Pattern of an tmaywraotrical
Model with three vertical Roof Bolts.
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find the best roof bolt pattern# Three holes at different angles 

(45°# 60° and 90°) from left to right In picture (23)» indicate 

the relative amounts of displacement at these points in test (14)#

In test (15), three bolts were installed with inclinations of 90°, 

60° and 45°, respectively# The purpose of the vertical bolt was 

to decrease the bending stresses in the left portion of the roof 

beam in picture (24); the center bolt was to reduce the zone of 

shear at the point of inflection by utilizing tensile forces 

developed in the bolt as a restraint; and the bolt to the right 

was installed to transfer stress from the immediate roof beam above 

the opening further into the abutment# Qualitatively, this pattern 

seemed to be successful, but it appeared desirable to investigate 

the effect of individual, cemented bolts on the stress distribution# 

Tests (16) and (1?) were performed to determine the effect of 

roof bolts installed in the vicinity of the rigid abutment on the 

stress distribution in the strata overlying the opening (Pictures 

25 and 26). Bolts inclined away from the opening (45°) reduced the 

bending stresses in the strata over the rigid abutment# Only a 

negligible change was observed in the bending stress near the yield­

ing abutment# It must be mentioned that complete bolt to plastic 

bonding was not achieved in test (17), where two bolts at an angle 

of 45° were installed in the maximum shear zone and adjacent to the 

rigid abutment. A proper installation of roof bolts at the small
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Picture 29. Test (20): Fringe Pattern of an Unsytenatrloal 
Model with three Poof Bolts ( % ,  60° and 60° )•

Picture 30. Test (10)i Unsymmetrical Model with three 
Boles (^5 , 90° and ^5°)* The lower Beam failed in Tension 
near both Ahutnants*
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scale used in this study was found to be extremely difficult*

A single bolt was used in test (id) and set at an angle of 

60 adjacent to the yielding abutment* The inclination was chosen 

to transfer some of the bending stress which occur in this portion 

of the roof beam to less highly loaded surroundings* The fringe 

pattern of this test in picture (27) indicates that although a 
lower load was applied in this case than in previous tests, the 

stress distribution at the yielding abutment was improved by the 

presence of a single roof bolt, as was predicted*

In test (19), the adverse effect roof bolts can create if 
they are installed without consideration of the stress distribution 
was vividly presented; picture (28). Although the three vertical 
bolts build a compound beam reducing the high bending stresses over 
the opening and the shear stresses at the points of inflection which 
were noticed previously in models without bolts, the bending stresses 
above the rigid abutment are greatly increased and indicate possible 
points of tension failure in the series of three beams*

finally, in test (20), a bolt pattern was developed applying 

the experiences gained from previous tests and correcting the common 

mistakes illustrated in test (19)* The overall lower stress concen­

trations resulting with this bolt pattern, picture (29), prove that 
the complicated unsymmetrical stress distribution can be controlled 

in models by the proper application of roof bolts* Although the
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experiments were perfomed within the elastic limits of the material, 
which is not true of the underground prototype, the qualitative 

results are applicable to full scale structures such as long wall 

gate-roads, where rock strata may be considered pseudo-elastic*
Since the installation of cemented roof bolts affected the readibillty 

of the Isochroma tics developed in the models, a quantitative analysis 

was inconclusive and possible only within narrow limits which do not 

permit formulation of quantitative expressions for roof-bolt - rock
strata behavior,
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CHAPTER IV

SUMMARY AND CONCLUSIONS

Summary

The purpose of the research presented in this thesis was to 

investigate the effect of roof bolts on the stability of the strata 

in the surroundings of long wall gate-roads. When coal is extracted 

on one side of these openings, convergence occurs and unsymmetrical 

loading conditions result. In practice, it is extremely difficult 

to control the strata behavior by conventional methods of support 

and attempts have been made to strengthen the beds by installation 

of roof bolts.

In the review of literature the following items were discussed! 

(a) pressure and relaxation movements in the surroundings of long 

wall gate-roads, (b) theory and practice of roof bolting in strati­

fied rock and (c) model study in general, and as applied to roof 

bolting in particular. This discussion introduced the reader to 

the present investigation. Photo-elastic material as Araldlte 502 

epoxy mixed with dibutyl phthalate plasticizer and HN 951 hardener 

was used to fabricate composite models which simulated the strata 

conditions in the surroundings of long wall gate-roads. Support
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for th® roof beams consisted of a rigid abutment of plastic, and an 

abutment made up of foam rubber sheets to obtain a yielding effect 

and to develop an unsymaetrical configuration* The models were 

tested in a 6 ft* diameter centrifuge providing the body force load 

required to satisfy the ’principles of similitude”* The particular 

properties of the photo-elastic material utilized enabled the author 
to ” freeze'* the stress distribution in which existed during the 
test in the model* After relieving the load, the original thick­
ness of the model of 1*5 in* was reduced in a machining process and 

the surfaces were polished to obtain model slices of 3/3 to 1 f2 in* 

thickness for analysis in a polariscope.
The test series was started with models under symmetrical con­

ditions to develop the ” stress-freezing” technique in the centrifuge 

and to establish the validity of the results, since the stress dis­

tribution for symmetrical cases was known* When subsequent models 

with a yielding abutment were tested, the stress distribution was 

found to be different* A zone of high shearing stress was observed 
in the immediate roof beams near the rigid abutment where the 

bending inflection point was located* The portion of the lower 

beam between the shear zone near the rigid abutment and the yielding 

abutment showed bending stresses similar to those in a symmetrically 

loaded beam*
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Based on this information, roof bolts were installed in the 

models using a cement to obtain an anchorage effect over the full 

length of the bolts* Number, inclination and pattern arrangements 

of th© bolts were varied over a series of 13 tests and the results 

were compared.

Conclusions

The model study presented substantiates the feasibility of 

application of the ’’stress-freezing'5 technique with photo-elastic 
materials, such as epoxy resin to centrifuge tests with composite 

models* Therefore, this technique could be applied to a practical 

mining problem, such as the investigation of the installation of 

roof bolts in mine openings which show asymmetry in the surrounding 

strata* Gate-roads accompanying an advancing long wall face are 

typical of these conditions*

From the results of the model tests simulating long wall gate- 

roads placed in simple geological structures, it was concluded that 

the unsymmetrical conditions caused by the extraction process of 

coal on one side result in a stress distribution with the following 

significant features*

(1) The bending stresses above the rigid abutment are greater, 

and more pronounced in the overlying beams than in the symmetrical 

case, indicating points of possible tension failure*
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(2) The two inflection points in the strata which occur above 

an opening under sytmotrical conditions are reduced to a single point 

in the unsymotriccl case if the convergence of the yielding abutment 

is large enough* This single inflection point is located in the 

beams over the opening in the vicinity of the rigid abutment.

Since the inflection point coincides with the zone of high shear, 

visual observation of the inflection in the strata bending permits 

determination of the shear zone location across the opening*

(3) The portion of the lower strata between the inflection 

point and the yielding abutment acts like a beam under symmetrical 

conditions*

(4) The shear stresses near the yielding abutment are reduced 

considerably in comparison to those present in a symmetrical condi­

tion, where pertinent dimensions are equal*

From analysis of the stress distribution developed in an 

unsymmetrical model configuration combined with the knowledge of the 

mechanical behavior of bolts, a bolt pattern with highest efficiency 

for strengthening the roof strata can be derived, ithin the limita­

tions of the assumptions made, of equal modulus of elasticity and 

thickness of each layer, flat formation and absence of bonding between 

the layers, the following consideration for the installation of roof 

bolts can be recommended:
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(1) Long bolts should be installed near the rigid abutment 

extending upward from the critical area above the opening, angling 

towards the abutment to decrease the high bending stresses*

(2) Bolts should be installed diagonally through the shear 

plane at the point of inflection of the bending strata utilizing 
tensile forces developed in the bolt as a restraint*

(3) Bolts should be installed at angles of 60° to 90°, near 

the yielding abutment, to transfer the bending stresses in that 
portion of the lower beam between the point of inflection and the 

yielding abutment to less highly loaded surroundings in the over- 

lying beams*

An extension of the present experimental investigation to 

more complicated conditions, such as different thickness in the 

sequence of layers, different modulus of elasticity and considerations 

of an inclined strata is recommended to obtain further information 

about the application of the roof bolts in underground openings.
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